So-net無料ブログ作成
検索選択

OVK01 新型ホットエンド温度試験 [OVK01]

新型ホットエンドの温度試験の準備が整いましたので実施しました。

ただし、ホットエンドのキャリッジには実装せずに、ヒートブレイクの製作に使用した治具にヒートシンクと空冷ファンをくっつけて、既製品のヒートブロックを加工したものに、ノズルとヒートブレイクとヒーターとサーミスタ、を組み付けて、それぞれを組み合わせ形状をでっちあげての試験となります。

試験においては、ヒートブレイクとPTFEチューブの接触面の温度を計り、PTFEチューブの連続耐熱温度以下である事と、フィラメントに余分な熱を与える恐れが無いかどうかを検証します。

組みたてた姿は以下になります。

IMAG2101.jpg

IMAG2102.jpg

IMAG2104.jpg

 

準備が整いましたら、まずは自分が使ってみたいフィラメントNo1のZ-ultratの印刷温度260度まで加熱します。

IMAG2083.jpg

加熱が済んだら、 ヒートブレイクからPTFEチューブを抜いて融けていないか確認します。

IMAG2085.jpg

問題ありません。

次にPTFEチューブを抜いたヒートブレイクに接触型温度計の熱電対を差し込み温度を計測します。

IMAG2086.jpg

IMAG2088.jpg

計測結果は63.3℃でした。

IMAG2084.jpg

ヒートブレイク近くの熱拡散ブロックを触診しても、10秒ほどホールドできる温度でした(経験上60℃ぐらい)。アルミブロックの熱伝達の早さと、ヒートブレイクをヒートシンク状ではなく、十分な熱容量を持った塊に対して接触させる事により、素早い熱の拡散に成功しています。これも狙い通りです。また、ヒートブレイクの熱伝導部分(ヒートブロックと熱拡散ブロックの間)の断面積が少ないので熱拡散ブロックに伝わる熱量が抑えられるため、上記の温度で収まっているのも設計通りです。(´・ω・`つ ※太字部分は某3Dプリンター活○技○検定試験のホットエンドの構造に関する○×問題で出題されるかもしれませんので皆さん覚えておいてくださいw)

 

次にヒートブロックの温度を300℃まで上げてみます。

IMAG2099.jpg

十分に待ってからヒートブレイクのPTFEチューブ接触面の温度を計測すると

IMAG2100.jpg

64.0℃でした。十分すぎるほど低い値です。

最後にもう一度、PTFEチューブを抜き差しして、融けないか確認して終了しました。

 

今回の試験結果についてですが、余りに上手くいきすぎて逆に不安なぐらいです。

特にヒートブレイクのPTFEチューブとの接触面の温度についてですが、先日のFusion360の熱解析機能を用いたシミュレーションではヒーター温度280℃に対して60℃と推定されていましたので、今回の試験結果は(ヒーター300℃に対して64.0℃)は十分想定の範囲内です。

64℃であればPTFEチューブが劣化する事もなければABSフィラメントにおいてはPTFEチューブ内で軟化することも無いと考えられます。

 

試験結果はOKと出ましたので、次はキャリッジと接続する熱拡散ブロックと、ヒーターとサーミスタ、ヒートブレイクとノズルを搭載するヒーターブロックを製作して、実機に組み込みたいと思います。

ヒーターブロックについては既製品を加工して作った今回の試作では、熱容量の不足による温度の安定性にかけるのと、熱拡散ブロックとの距離が近すぎてヒートシンク側が放射熱による影響を多少受けている様なので、そうならない様な形状を考えて設計し、アルミブロックか銅ブロックから削り出して製作します。かまぼこの断面みたいな型になる予定です。

ちなみにヒーターブロックは放射による無駄熱と、造形物冷却ファンによる干渉、キャリッジの移動における空気との接触対流を避けるため、サーマルプロテクターを装着する予定です。バイクマフラー用の断熱アルミ&ガラスクロステープ(耐熱500℃)を万能耐熱接着剤オートウェルドで箱型に接着してヒーターブロックをすっぽり囲ってしまう算段です。

サーミスタについてですが、現状においては配線を細めのPTFEチューブで覆ってショートを防止をしていますが、そのままですと耐熱性に問題があります。これについてはM3アルミネジに穴を空けてサーミスタの配線を通し、オートウェルドでモールドすることで高温耐性を持たせる予定です。もしくはPT100と呼ばれるUltimaker2で使われている金属カードリッジ型を導入するかもしれません(最近E3Dさんが従来のNTCサーミスタを穴に直接埋め込む方法からPT100カードリッジへ切り替えしたそうなので私も試してみます)。 PT100についてはSmoothieWare側での対応方法の調査が必要です。

以上の予定から、追加の加工がすこし込み入りますので実機の再稼働はしばらく先になりそうです。

 


タグ:OVK01
nice!(2)  コメント(2)  トラックバック(0) 

nice! 2

コメント 2

多夢

興味深いですねー。

私も同様の課題に取り組んでおります。
樹脂の送り圧を減らす事は小径ノズルや高速、長時間造形にとってとても重要な要素ですね。

課題が近くても取り組み方や実装に違いが出てくるのが面白いです。
別のところでお話しさせていただいた、熱の分離を目的とした異素材の組み合わせですが、加工はうまくいきました!
効果のほどはこれからチェックですが、実験方法を模索中です。 高速で押し出して滑り量の変化を見るかな?

たぬきちさんの実験、めっちゃ期待しております。
造形で良い結果が出ることを祈念しております。
スーパーエンプラ使えるスーパーノズルになりますね!
by 多夢 (2016-07-17 08:29) 

たぬきち

樹脂の送り圧を減らす事は色々な場面で効果があるのでとても大事ですよね。
ところで、特に記事内にて文章にしていませんが、実験中のホットエンドにはMicroSwiss社のTwinCladXTという高硬度&低摩擦&耐熱性メッキが施されたノズルを使っています。
コレが実はもうひとつのキモでして、低摩擦であるがゆえにノズルの先端にフィラメントが付着しない(余分に溢れても造形しているうちにスルっとは剥がれるのでお焦げ玉にならない)というメリットがあります。エンプラにも問題無く使えるはずです。
一般的にノズルにはテフロンコートを施すという手段もありますが、耐熱性と耐摩耗性に難があります。TwincladXTノズルは耐摩耗については普通のフィラメントを使う分には全く問題ありません。
わずかではありますが、送り圧の低減にも効いているはずです。

マルチマテリアル(カッコよく言ってみた`・ω・´キリッ)の加工成功おめでとうございます。実験結果楽しみにしています。
お互い切磋琢磨して行きましょう!

by たぬきち (2016-07-17 23:17) 

コメントを書く

お名前:
URL:
コメント:
画像認証:
下の画像に表示されている文字を入力してください。

トラックバック 0

この記事のトラックバックURL: